- This is an assessment test.
- To draw maximum benefit, study the concepts for the topic concerned.
- Kindly take the tests in this series with a pre-defined schedule.

## Algebra: Quadratic Equations Test-1

Congratulations - you have completed

*Algebra: Quadratic Equations Test-1*.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%% Your answers are highlighted below.

Question 1 |

$ \begin{array}{l}If\,\,p=99,\,\\then\,\,value\,\,of\,\,\,p\left( {{p}^{2}}+3p+3 \right)is\end{array}$

999 | |

9999 | |

99999 | |

999999 |

Question 1 Explanation:

$ \begin{array}{l}p\left( {{p}^{2}}+3p+3 \right)\\=99\left( {{99}^{2}}+3X99+3 \right)\\=99\left( 9801+297+3 \right)\\=99(9801+300)\\=99(10101)\\=999999\end{array}$

Question 2 |

If p= 999,

then the value of

$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is

then the value of

$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is

1000 | |

999 | |

998 | |

1002 |

Question 2 Explanation:

$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$

$ =\sqrt[3]{999\left( 1001001 \right)+1}$

$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$

$ =\sqrt[3]{999\left( 1001001 \right)+1}$

$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$

Question 3 |

If p=101,

then the value of

$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$ is

then the value of

$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$ is

100 | |

101 | |

102 | |

1000 |

Question 3 Explanation:

$ \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$

$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}-3X101+3 \right)-1}\\=\sqrt[3]{101\left( 10201-300 \right)-1}\\=\sqrt[3]{1000000}\\=100\end{array}$

$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}-3X101+3 \right)-1}\\=\sqrt[3]{101\left( 10201-300 \right)-1}\\=\sqrt[3]{1000000}\\=100\end{array}$

Question 4 |

If p=124,

$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?

$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?

5 | |

7 | |

123 | |

125 |

Question 4 Explanation:

$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$

$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$

$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$

Question 5 |

$ \displaystyle \begin{array}{l}If\,x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1}}\\Then\,\,\,5{{x}^{2}}-5x-1=?\end{array}$

0 | |

3 | |

4 | |

5 |

Question 5 Explanation:

$ \begin{array}{l}x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1}}\\{{x}^{2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}\\=>{{x}^{2}}=\frac{{{(\sqrt{5}+1)}^{2}}}{4}\\=>4{{x}^{2}}={{(\sqrt{5}+1)}^{2}}=6+2\sqrt{5}\\=>{{x}^{2}}=\frac{6+2\sqrt{5}}{4}\\5{{x}^{2}}-5x-1\\=\frac{30+10\sqrt{5}-10\sqrt{5}-10-4}{4}\\=\frac{16}{4}\\=4\end{array}$

Once you are finished, click the button below. Any items you have not completed will be marked incorrect.

There are 5 questions to complete.

List |